6 ELECTROSTATIC CONTRIBUTIONS TO THE BRUGGER-TYPE..
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where v # 1 #£ and for any pomt—group operation (e.g., U| “’”*
®, R Ry, U ¥, where ® is a point- group sym-
metry element). However, for those space-group

(G, v)=5G) ST | 37)

These internal-strain derivatives are similar to operations which contain a rigid translation, e.g.,
elastic constants in that they transform as tensors screw axes or glide planes, the unit-cell label v




3616 E. R. FULLER, JR.

also may change. An important consequence of
this is that U/%’, and thus the internal-strain
parameter

Ay 0)= (M)

My ’

=0, 7=0
need not have the same symmetry as the piezoelec-
tric tensor. An example of this is seen later when
considering the wurtzite structure. Also, itis
easily seen that these electrostatic derivatives
obey the following relations: U/, U “%,

U %), and U@ “0¢m gatisfy Cauchy relations

in that the Cartesian indices can be arranged in
any order (e.g., U’ =U¥P); and U %2 is
symmetric with respect to the interchanges p—g¢
and i~ j.

Because the energy density depends on relative
interlattice displacements, only s —1of the s in-
ternal strains W(v) are independent.'” Thus, one
may choose any independent set of internal strains
w* (@=1,...,s—1), which are linear combinations
of the w(v),

2 3 o=
w“=ﬁa‘,,w @) .
v=0

Then, derivatives are related by
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Internal strains only occur in nonprimitive lat-
tices with ions not at centers of symmetry. Thus,
of the 11 structures considered earlier, only five
(diamond, zinc blende, hcp, WC, and wurtzite)
can have an internal-strain contribution to the
elastic constants. Because the diamond and zinc-
blende lattices differ only in the sign of the ionic
charges, they may be considered together. The
same applies for the hcp and WC lattices. How-
ever, since the wurtzite structure consists of two
interpenetrating hep sublattices, the hep and WC
structures can be obtained from wurtzite by a
suitable choice of charges. Thus, it is convenient
to consider hep and WC with wurtzite.

The zinc-blende and diamond structures have a
fcc Bravais lattice with basis vectors 7(0)= (0, 0, 0)
and 7(1)=(a)(1,1,1). To form the two structures,
the signs of the charges in the unit cell are chosen
as 3o=+1 and 3,=- 1(+1) for the ionic zinc-blende
(metallic diamond) structure. For structures with
two ions per unit cell, there is only one indepen-
dent internal strain. Here it has been chosen as

=[W(1)-w(0)]/Ca),

and thus
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Then, the independent electrostatic internal-strain
derivatives for zinc blende with Cauchy relations
are

Ul=-10.057668147, U;i'=0.819616921,
U= -4.188790205, U3'=10.062167052,
U =19.202879707, UZ =14.250957256,
Ul=U}l=Uls=16.762780245 ,

in units of Z%¢%/a*. (The notation used here is that
of Appendix A, with Voigt notation used for all
subscripts.) Since the electrostatic internal-strain
derivatives are proportional to 343, for structures
with two ions per unit cell, the results for the «
diamond structure are negative those of zinc
blende.

The hcp, WC, and wurtzite structures have a
simple hexagonal Bravais lattice with basis vec-
tors

?(0)7- (0, 0, O), ?(1) == (a/ﬁ, 0, %C) ’
7(2)=(0,0,uc), 7(3)=(a/V3,0,[u+}]c)

referred to the Cartesian axes. The three struc-
tures can be formed by choosing the signs of the
charges in the unit cell as follows: For metallic
hep (ionic WC) 39=+1, 3,=+1(=1), and 3,=3;=0;
and for ionic wurtzite 3,=3,=+1 and 3,=33=—1.
The three independent internal strains will be
taken as

w'=[W)-FO)]/L, F=[F#E)-F)]/L,
and
W= [W(2)-%O)/L ,

where L =aVv3. The internal strains w! and w2
represent the interlattice displacement in the two
hep sublattices, while w® is an interlattice dis-
placement between the two hep sublattices. Then,
internal-strain derivatives are taken according to
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1t is easily seen that derivatives with respect to vzvz
and w® are zero for hep and WC, since internal-
strain derivatives with respect to w(v) are propor-
tional to 3,. Therefore, for these two structures,
the internal-strain label will be omitted and under-
stood to be a=1. The electrostatic internal-strain
derivatives for ideal hcp with Cauchy relations are




